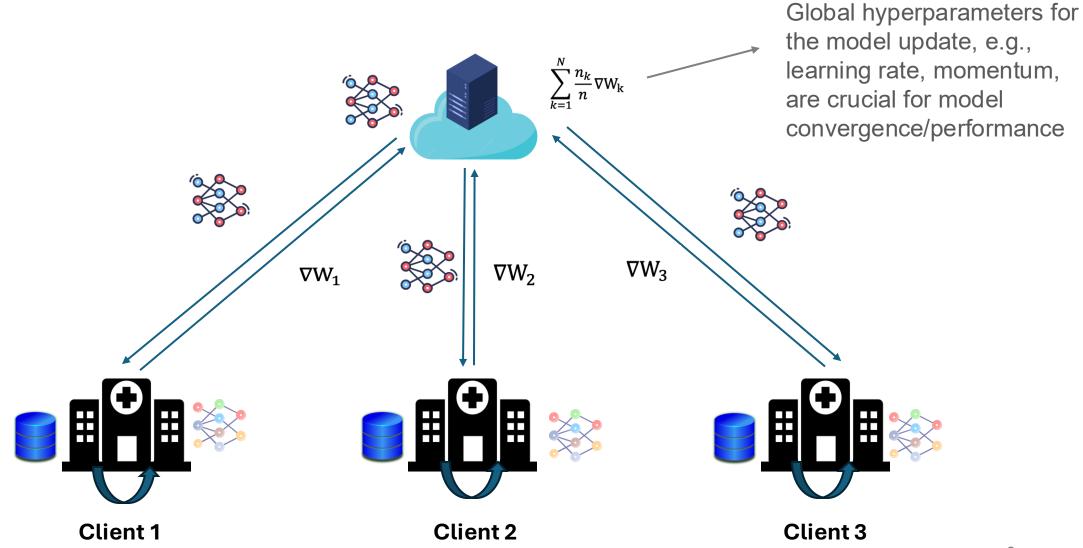
Privacy-Preserving Hyperparameter Tuning for Federated Learning

Apostolos Pyrgelis

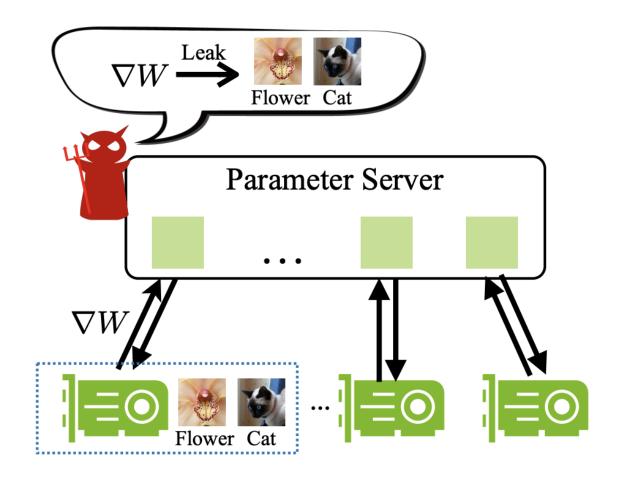
Senior Researcher @ RISE Research Institutes of Sweden

AI & Security Webinar - 30/4/2025

(Cross-Silo) Federated Learning

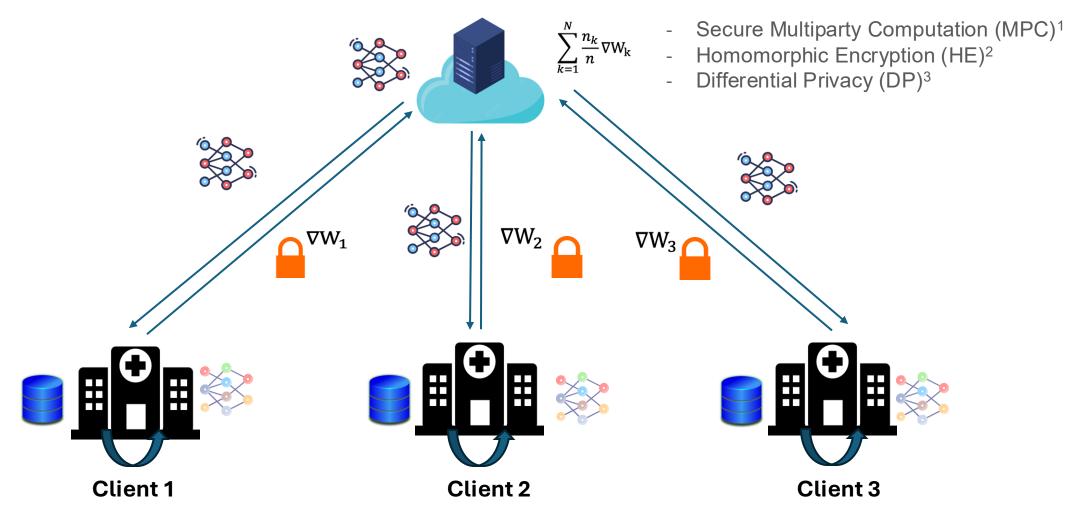


Privacy in Federated Learning (?)



Privacy-Preserving Federated Learning (PPFL)

Privacy-enhancing Technologies (PETS):



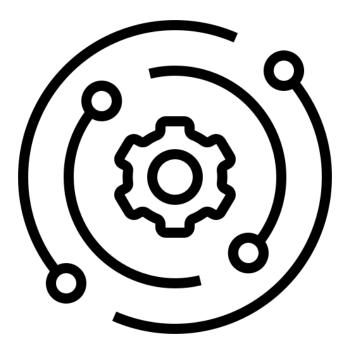
[1] Wagh et al., Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning, in *PETS*, 2021.

[2] Sav et al., POSEIDON: Privacy-Preserving Federated Neural Network Learning, in NDSS, 2021.

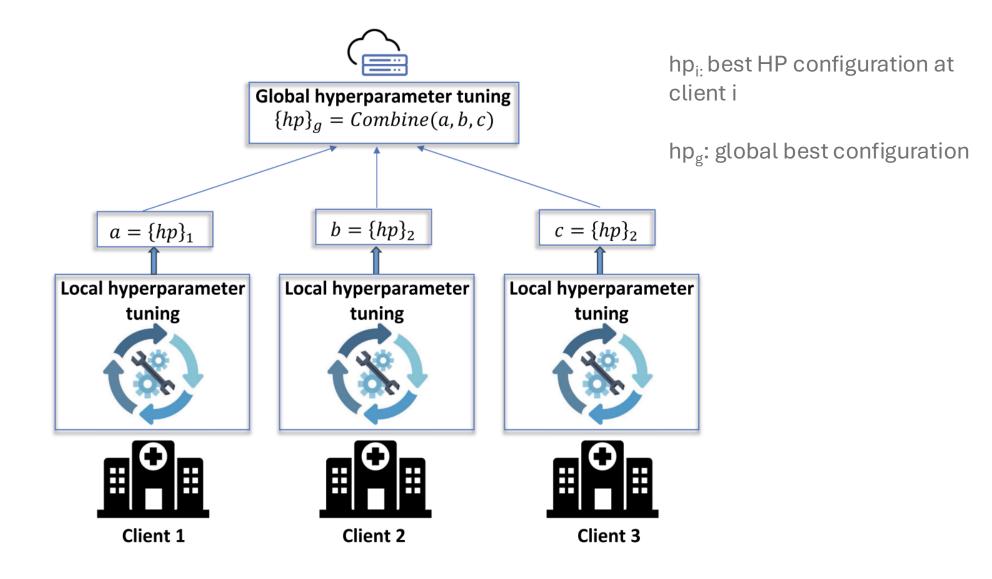
[3] Abadi et al., Deep Learning with Differential Privacy, in ACM CCS, 2016.

Hyperparameter Tuning in (PP)FL

- Traditional HP tuning methods, e.g., grid/random search, are impractical for FL settings
- PETS for PPFL raise additional challenges:
 - Computation/communication overhead (HE/MPC)
 - Spending privacy budget on HP tuning (DP)
- Method requirements:
 - Efficiency (single-shot, before the FL training starts)
 - Accuracy (retain the performance of the trained model)
 - Privacy (HP tuning should not result to new forms of leakage)¹



Overview of our Approach

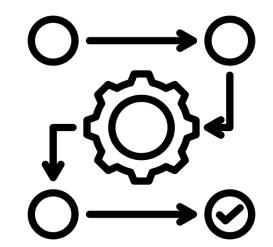


Research Questions

- What is a suitable function to "Combine" the clients' Measurement Study hyperparameters and yield an effective global configuration?
- 2) How to enable the "Combine" function while protecting the privacy of each client's hyperparameters?

Methodology

- 1) We perform local HP optimization (LHO) at each client to derive optimal HPs on local datasets
- 2) We perform global HP optimization (GHO) with federated grid search to construct a *ground truth* for the server HPs



- 3) We benchmark various *combination* strategies that yield the global HPs based on the local ones:
 - o Mean

Measurement Study

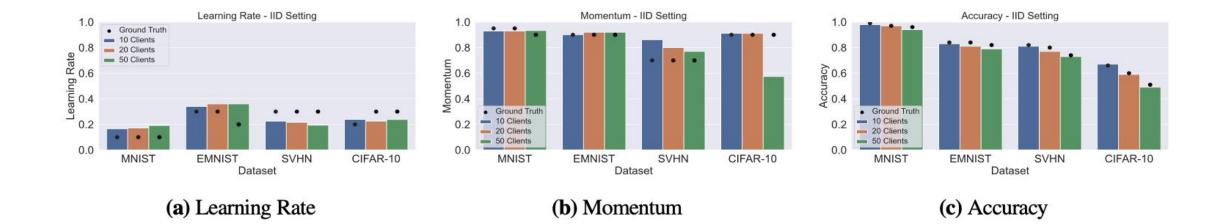
- o Median
- o Trimmed mean
- Mean/Median of best HPs
- o Density based clustering
- 4) We compare the results of each HP combination strategy with GHO

Experiment Setup

Datasets	Models	FL Settings	Hyperparameters
MNIST EMNIST Street View House Numbers CIFAR-10	1-layer CNN (30K params) 2-layer CNN (54K params) 6-layer CNN (700K params)	iid non-iid (label, feature, quantity skew)	Learning rate Momentum

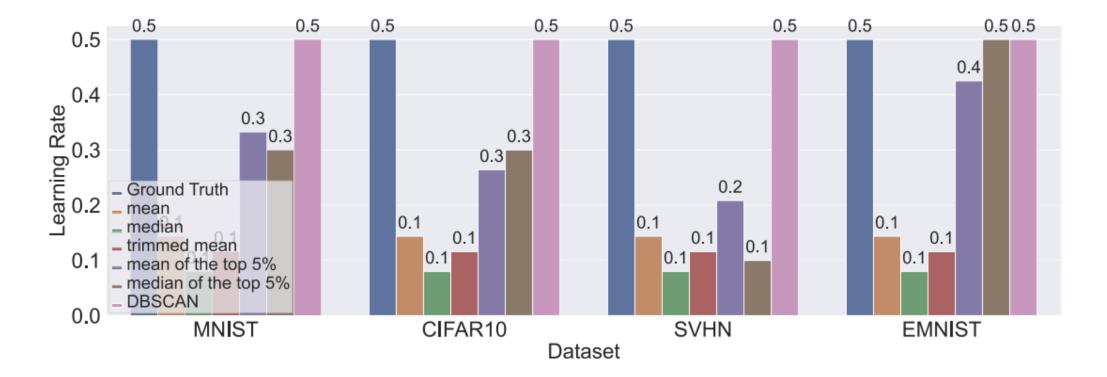
We conducted over 4,067 experiments for the iid and 6,912 for the non-iid settings

IID Setting Results



HP averaging achieves good enough performance as the combination function

Non-IID Setting Results

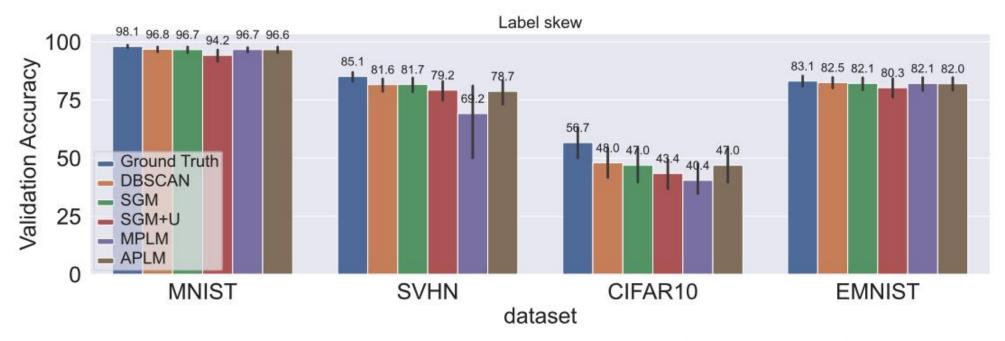


Learning rate with feature skew (β =0.02)

DBSCAN yields the best performance among various techniques (95/140 experiments)

Comparison with Prior Work

Measurement Study



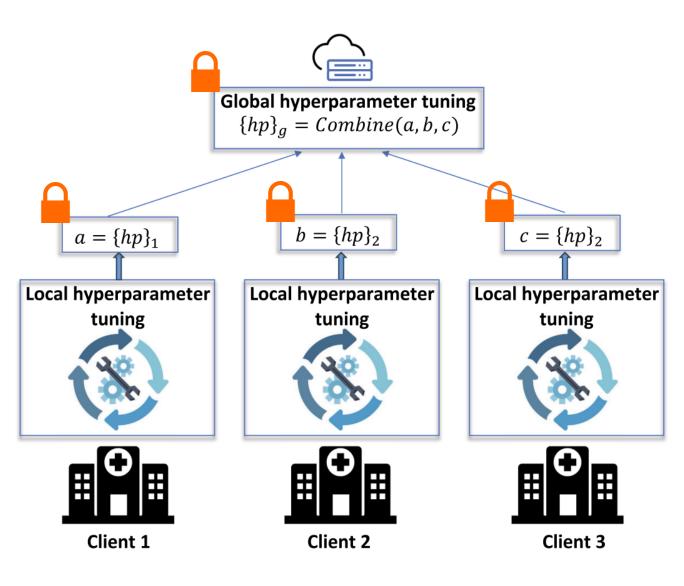
(c) Validation accuracies averaged across the label skew setting.

DBSCAN is on par with the SotA HP optimization method¹

PrivTuna Framework

PrivTuna enables the "combine" function in an encrypted (MHE) and federated manner

PrivTuna Framework



- MHE enables distributed trust (decryption requires collaboration between the clients)
- Balanced computation and communication overhead (e.g., plaintext/ciphertext operations, collective bootstrapping)

PrivTuna Overview

- SecKeyGen(1^λ): Each client generates its private/public key pair (sk_i, pk_i)
- DKeyGen({sk_i}): The clients collectively generate a public key pk (and evaluation keys evk)
- Each client encrypts its LHO results with pk, i.e., c_i = Enc(pk, LHO_i)
- The server homomorphically executes the Combine functionality on the encrypted $\boldsymbol{c}_{\rm i}$
- DDecrypt(c, {sk_i}): The clients collectively decrypt the global hyperparameters

Experimental Results

Federated grid search requires ~2 hours of computation while POSEIDON¹ PPFL ~147 hours to tune HPs

	Runtime (s)	Comm. / Client (MB)	Precision (MSE)
PF-Mean	1.8	5.2	1.8 * 10 ⁻⁴
PF-DBSCAN	17.3	28.2	1.02 * 10 ⁻³

HW: Apple M2 Pro 3.49 GHz / 16 GB RAM

N: 20 clients

HE: CKKS

PrivTuna Framework

 λ : 128-bit security

Conclusion

- We investigated the problem of HP tuning in crosssilo FL
- We performed a comprehensive measurement study to understand the relationship between client and server HPs and identify strategies for single-shot HP tuning
- We introduced PrivTuna, an MHE framework for privately tuning HPs in cross-silo FL

The End

Thanks for your attention!

Full Paper:https://ieeexplore.ieee.org/document/10848179

Journal: IEEE Transactions on Privacy, Volume 2, 2025

Authors: Natalija Mitic¹, Apostolos Pyrgelis², Sinem Sav³

Affiliations: ¹Kera Health Platforms Inc, ²RISE, ³Bilkent University

Source Code: <u>https://github.com/sinemsav/hyperparams</u>

Contact: apostolos.pyrgelis@ri.se

