## Cryptography and Security in Wireless Sensor Networks

Pyrgelis Apostolos pyrgelis@ceid.upatras.gr

Department of Computer Engineering and Informatics University of Patras, Greece

> FRONTS 2nd Winterschool Braunschweig, Germany

#### Outline

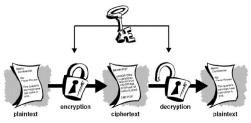
 Cryptography Public vs Symmetric Key Cryptography Key Establishment Elliptic Curve Cryptography

Security in Wireless Sensor Networks Attacks and Countermeasures in WSN Key Distribution in WSN ECC in WSN

Wiselib + Crypto pMP The Crypto Concept SecRouting Concept

## Cryptography

#### Definition


Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication and data origin authentication

- A research field for scientists, mathematicians and engineers
- Important role in securing commercial and goverment applications including communications, payment systems, access and identification solutions



## Cryptography Categories

 Cryptography can also be defined as the conversion of data (with use of cryptographic keys) into a scrambled code that can be deciphered and sent across a public or private network



- Cryptography is divided into two categories
  - **1** Symmetric-key Cryptography: In a symmetric-key algorithm both parties use the same key for encryption and decryption (DES,AES)
  - Public-key Cryptography: Asymmetric cryptography algorithms use different keys for encryption and decryption.Each node in the network has a pair of keys, the private key and the public key (RSA, Diffie-Hellman, ECC)

### Symmetric-key vs Public-key Cryptography

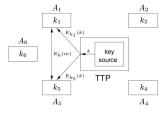
#### Symmetric-key Cryptography

- Symmetric-key ciphers have high rates of data throughput (Mbytes/sec) and relatively short keys
- Key must remain secret at both ends and must change frequently, many key pairs to be managed in large networks

#### Public-key Cryptography

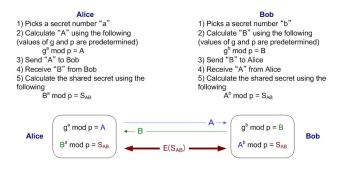
- Only the private key must be kept secret, a private/public key pair may remain unchanged for considerable periods of time, efficient digital signature mechanisms, smaller number of necessary keys in large networks
- Much slower throughput rates than symmetric-key cryptography and larger key sizes

イロト イポト イヨト イヨト 二日


### **Comparison Summary**

- Symmetric-key and public-key encryption have a number of complementary advantages
- Cryptographic schemes exploit the strengths of each
  - The long term nature of the public/private keys of the public-key cryptography
  - The performance efficiencies of the symmetric-key cryptography
- Public-key cryptography facilitates key management and efficient signatures (particularly non-repudiation)
- Symmetric-key cryptography is efficient for encryption algorithms and some data integrity applications

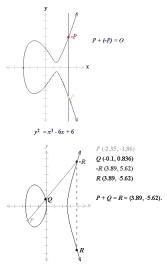
(人間) ト く ヨ ト く ヨ ト


#### Key establishment and management

- Key establishment is any process whereby a shared secret key becomes available to two or more parties, for subsequent cryptographic use (key agreement, key transport)
- Key management (KM) is the set of processes and mechanisms which support key establishment and the maintenance of ongoing keying relationships between parties, including replacing older keys with new ones
- KM through symmetric-key techniques (easy to add/remove entities, TTP which stores n secret keys)
- KM through public-key techniques (no TTP, a public file with the nodes public keys, authentication problems and need for public key certification)



### Diffie-Hellman Key Agreement


 A cryptographic protocol that allows two parties that have no prior knowledge of each other to establish a shared secret key (g<sup>ab</sup>modp) over an insecure communications channel



- Its security is based on the DLP : given an element g in a finite group G and another element h ∈ G, find an integer x such that g<sup>x</sup> = h
- Authentication issues (Man in the Middle Attack)

# Elliptic Curve Cryptography (1/2)

- Public-key cryptosystem introduced by Victor Miller and Neal Koblitz in the year 1985
- An elliptic curve E is defined as the set of solutions  $(x, y) \in Z_p x Z_p$  that satisfy the equation  $y^2 \equiv x^3 + ax + b(modp)$  along with the point at infinity O
- $a, b \in Z_p$  are constants such that  $4a^3 + 27b^2 \neq 0 (modp)$  and p > 3
- The set of points on the curve with coordinates in a finite field along with the point of infinity *O* form groups with respect to addition operation
- P + O = O + P = P for all  $P \in E$
- *P* + *Q* = *Q* + *P* and (*P* + *Q*) + *R* = *P* + (*Q* + *R*) where *P*, *Q*, *R* ∈ *E*

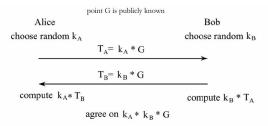


• • = • • = •



14/10/2009 9 / 42

## Elliptic Curve Cryptography (2/2)


- For computation of a multiple kP of an elliptic curve point P where k > 0 binary method (double and add) is used. For example 6P = 2(2P + P)
- Its security is based on the ECDLP on the EC group: given points P and Q on the elliptic curve, find a least positive integer k that Q = kP
- Several known protocols have been adapted to elliptic curves (ECDH, ECDSA)
- Main Advantage: Smaller key sizes than other public-key systems (RSA) for achieving the same level of security (performance advantages)

| Symmetric | ECC | DH/DSA/RSA |
|-----------|-----|------------|
| 80        | 163 | 1024       |
| 128       | 283 | 3072       |
| 192       | 409 | 7680       |
| 256       | 571 | 15,360     |

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Elliptic Curve Diffie Hellman

- Alice and Bob want to exchange a key. They carefully chose an elliptic curve E and a public base point G(x, y) on the curve
- Alice chooses her private key, a random integer k<sub>A</sub> and Bob chooses a random integer k<sub>B</sub>. The random integers are kept private
- Alice computes her public key, a new point on the elliptic curve by performing scalar multiplication  $T_A = k_A G$  and sends it to Bob who simultaneously computes his public key  $T_B = k_B G$



• Alice receives  $T_B$  and computes the shared secret, a new point on elliptic curve  $K = k_A T_B = k_A k_B G$ .Similarly, Bob takes  $T_A$  and computes  $K = k_B T_A = k_B k_A G$ 

# ECIES (1/2)

- Agreement on a an elliptic curve *E*, a public base point *G*(*x*, *y*) on the curve and a MAC scheme
- Encryption of message M with receiver's public key Q = dG
  - Select a random integer k and compute public key  $R = kG = (x_R, y_R)$
  - Compute shared secret  $P = kQ = (x_P, y_P)$  and  $z = x_P$
  - Use z on KDF to generate keying data K
  - Use len octets of K as encryption key EK and maclen octets of K as mac key MK
  - Use symmetric encryption scheme to encrypt the message *M* to *EM* with key *EK*
  - Use mac scheme with key MK to produce a tag D for EM
  - Output C = R |EM|D

イロト イポト イヨト イヨト 二日

# ECIES (2/2)

- Decryption of ciphertext C with receiver's private key d
  - Obtain the elliptic curve point  $R = (x_R, y_R)$
  - Compute shared secret  $P = dR = dkG = kQ = P = (x_P, y_P)$  and  $z = x_P$
  - Use z on KDF to generate keying data K
  - Use len octets of K as encryption key EK and maclen octets of K as mac key MK
  - Use mac scheme with key *MK* to verify that *D* is the tag on *EM*
  - Use symmetric encryption scheme to decrypt EM using key EK and recover initial message M

14/10/2009 13 / 42

#### Outline

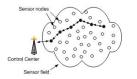
Cryptography
 Public vs Symmetric Key Cryptography
 Key Establishment
 Elliptic Curve Cryptography

Security in Wireless Sensor Networks Attacks and Countermeasures in WSN Key Distribution in WSN ECC in WSN

Wiselib + Crypto pMP The Crypto Concept SecRouting Concept

## Network Security

#### Definition


The protection of a computer network and its services from unauthorized modification, destruction, or disclosure.

- Distribution of secret information
- Efficiency of communication protocols
- Cryptographic issues
- Network attacks and coutermeasures



## Security Challenges in WSN

- The broadcast nature of the wireless communication renders a WSN susceptible to link attacks ranging from passive eavesdropping to message replay and message distortion
- The network deployment in hostile environments (e.g. battlefield, forest) with relatively poor physical protection





- The limitations in energy, computational power and memory of the tiny sensors
- The extremely large number of interacting devices in a sensor network
- The dynamic nature of WSN (frequent changes in both its topology and its membership)

## Typical WSN Applications

Huge range of possible applications depending on the sensor type (thermal, acoustic, seismic etc) :

- Monitor and Control (Habitat, Environmental, Ecosystem, Agricultural, Structural, Traffic, Manufacturing, Health)
- Security and Surveillance (Border and Perimeter control, Target tracking, Intrusion detection)

# Security and Privacy issues are raised.











▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Data Confidentiality: Ensuring that only authorized sensor nodes can access the content of the messages
- Data Authentication: Ensuring that the data is originated from the correct source
- Data Integrity: Ensuring that any received data has not been altered in trasmit by unauthorized parties
- Data Freshness: Ensuring that no old messages have been replayed
- Availability: Ensuring that services offered by whole WSN or by a single sensor node must be available whenever required

- Data Confidentiality: Ensuring that only authorized sensor nodes can access the content of the messages
- Data Authentication: Ensuring that the data is originated from the correct source
- Data Integrity: Ensuring that any received data has not been altered in trasmit by unauthorized parties
- Data Freshness: Ensuring that no old messages have been replayed
- Availability: Ensuring that services offered by whole WSN or by a single sensor node must be available whenever required

• • = • • = •

- Data Confidentiality: Ensuring that only authorized sensor nodes can access the content of the messages
- Data Authentication: Ensuring that the data is originated from the correct source
- Data Integrity: Ensuring that any received data has not been altered in trasmit by unauthorized parties
- Data Freshness: Ensuring that no old messages have been replayed
- Availability: Ensuring that services offered by whole WSN or by a single sensor node must be available whenever required

伺 ト イヨト イヨト

- Data Confidentiality: Ensuring that only authorized sensor nodes can access the content of the messages
- Data Authentication: Ensuring that the data is originated from the correct source
- Data Integrity: Ensuring that any received data has not been altered in trasmit by unauthorized parties
- Data Freshness: Ensuring that no old messages have been replayed
- Availability: Ensuring that services offered by whole WSN or by a single sensor node must be available whenever required

・ 同 ト ・ ヨ ト ・ ヨ ト

- Data Confidentiality: Ensuring that only authorized sensor nodes can access the content of the messages
- Data Authentication: Ensuring that the data is originated from the correct source
- Data Integrity: Ensuring that any received data has not been altered in trasmit by unauthorized parties
- Data Freshness: Ensuring that no old messages have been replayed
- Availability: Ensuring that services offered by whole WSN or by a single sensor node must be available whenever required

伺 ト イヨト イヨト

- Data Confidentiality: Ensuring that only authorized sensor nodes can access the content of the messages
- Data Authentication: Ensuring that the data is originated from the correct source
- Data Integrity: Ensuring that any received data has not been altered in trasmit by unauthorized parties
- Data Freshness: Ensuring that no old messages have been replayed
- Availability: Ensuring that services offered by whole WSN or by a single sensor node must be available whenever required

伺 ト く ヨ ト く ヨ ト

# WSN Adversary (1/2)

#### Definition

A person or another entity that attempts to cause harm to the network, for example, by unauthorized access or denial of service.

- Passive: Only monitors the communication channel. Threatens the confidentiality of data.
- Active: Attempts to delete, add or alter the transmission on the channel. Threatens data integrity, authentication and confidentiality.



# WSN Adversary (1/2)

#### Definition

A person or another entity that attempts to cause harm to the network, for example, by unauthorized access or denial of service.

- Passive: Only monitors the communication channel. Threatens the confidentiality of data.
- Active: Attempts to delete, add or alter the transmission on the channel. Threatens data integrity, authentication and confidentiality.



# WSN Adversary (2/2)

#### Definition

A person or another entity that attempts to cause harm to the network, for example, by unauthorized access or denial of service.

- Mote-Class Attacker: Has access to a few nodes with similar capabilities to those deployed in the network.
- Laptop-Class Attacker: Has access to more powerful devices like a laptop. Has advantages over legitimate nodes like greater battery power, more capable cpu and high-power antenna.
- Insider: Has compromised some authorized nodes of the network (stolen key material, run malicious code).
- Outsider: Has no special access to the network.

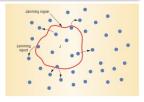
# WSN Adversary (2/2)

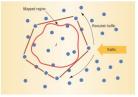
#### Definition

A person or another entity that attempts to cause harm to the network, for example, by unauthorized access or denial of service.

- Mote-Class Attacker: Has access to a few nodes with similar capabilities to those deployed in the network.
- Laptop-Class Attacker: Has access to more powerful devices like a laptop. Has advantages over legitimate nodes like greater battery power, more capable cpu and high-power antenna.
- Insider: Has compromised some authorized nodes of the network (stolen key material, run malicious code).
- Outsider: Has no special access to the network.

### Attacks and Countermeasures in WSN (1/5)

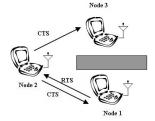

#### Definition


The denial of service attack (DoS) is any event that diminishes or eliminates a network's capacity to perform its expected function

#### • Physical Layer

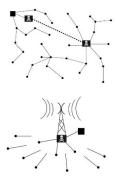
- Jamming: Interference with the radio frequencies a network's nodes are using
- Tampering: Physical compromise of nodes

Solutions: spread spectrum communication, jamming reports, accurate and complete design of the node physical package






### Attacks and Countermeasures in WSN (2/5)

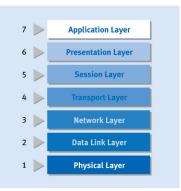

#### • Data Link Layer

- Collision: Altering of transmission octets to disrupt the packets (checksum mismatch,back off in some MAC protocols)
- Exhaustion: Collisions and back off in MAC protocols result in re-transmissions which result to the exhaustion of battery resources
- Unfairness: Degrading service by causing users of a real-time MAC protocol to miss their deadlines
- Solutions: Error correcting codes, collision detection techniques, TDM, rate limiting



### Attacks and Countermeasures in WSN (3/5)

- Network Layer
  - Selective Forwarding: Malicious nodes refuse to forward certain messages and simply drop them
  - Sinkhole: The adversary attracts the surrounding nodes with unfaithful routing information
  - Sybil attack: A single node presents multiple identities to other nodes
  - Wormhole: The adversary tunnels the traffic received in a part of the network to another
  - HELLO flood: A laptop-class attacker broadcasts information with enough transmission power convincing every node in the network that he is his neighbor
- Solutions:Link layer encryption and authentication, multipath routing, identity verification, authenticated broadcast




### Attacks and Countermeasures in WSN (4/5)

#### • Transport Layer

- Flooding: The adversary sends many connection establishment requests to the victim (memory and resource exhaustion)
- Desynchronization: The adversary repeatedly forces messages which carry sequence numbers to one or both endpoints (request for retransmission of missed frames)

Solutions: Connection-less protocols, packet authentication including all control fields in the transport protocol header



#### Attacks and Countermeasures in WSN (5/5)

- Summary of Attacks and Countermeasures in WSN
  - Need for physical network protection (not always possible)
  - Cryptography can provide link layer encryption and authentication mechanisms (MAC) but this is not enough
  - End to end security mechanisms are impractical
  - Careful protocol design (routing, localization, data aggregation) with respect to security principles and attacker models
  - Consideration of energy issues when adapting countermeasures

### Key Distribution in WSN - Properties

Key distribution mechanisms should support the security requirements mentioned before plus

- Scalability: support of large networks and flexibility against the increase of their size
- Efficiency: consideration of storage, processing and communication limitations on sensor nodes
  - Storage Complexity: amount of memory required to store security credentials
  - Processing Complexity: amount of processor cycles required to establish a key
  - Communication Complexity: number of messages exchanged during a key generation process
- Key Connectivity: probability that two (or more) sensor nodes store the same key or keying material
- Resilience: resistance against node capture (higher resilience means lower number of compromised links)

Pyrgelis Apostolos (CEID)

## Key Distribution in WSN

Basic problems

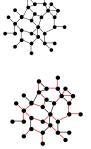
- Pair-wise keying: Establishment of a key used to secure unicast communication between a pair of sensor nodes over single or multi-hop wireless link
- Group-wise keying: Establishment of a key used to secure multicast communication among a group of sensor nodes over single or multi-hop wireless link

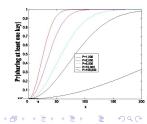
Approaches

- Probabilistic: key-chains are randomly selected from a key-pool and distributed to sensor nodes
- Deterministic: deterministic processes are used to design the key-pool and the key-chains to provide better key connectivity
- Hybrid: combination of the above to improve scalability and resilience

Mechanisms

- Pre-distribution (safety??)
- Dynamic key generation


- 4 同 6 4 日 6 4 日 6


#### Pair-wise keying

- L.Eschenauer and V.Gligor, "A key-management scheme for distributed sensor networks" –ACM CSS 2002
- Random pair-wise key pre-distribution
- A set of keys randomly chosen from a key pool
- Reservoir of P keys
- k(<< P) keys pre-distributed in each sensor</li>
- Probability for any 2 sensors to have a common key:

$$p = 1 - \frac{((P - k)!)^2}{P! (P - 2k)!}$$

• 3 phases: key pre-distribution, shared-key discovery, path-key establishment





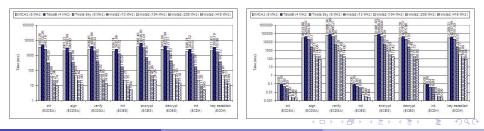
14/10/2009 28 / 42

#### Group-key establishment

- The creation of the shared secret must be done very carefully
- Some protocols based on the GDH: each member generates a nonce  $N_i$  and contributes to the shared key  $K_{group} = g^{N_1...N_n}$
- Should guarantee:
  - computational group key secrecy: it is computational infeasible for any passive adversary to discover any group key
  - key indepedence: an attacker knowing proper subset of group keys cannot discover any other group keys
  - forward/backward secrecy: any subset of group keys can not be used to discover previous/subsequent keys
- The key should change every time the group changes
- Should be able to handle membership events (join events, leave events, group merge events, group partition events)

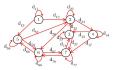
< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# ECC in WSN (1/2)

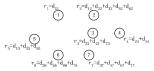

- D.Malan, M.Welsh and M.Smith- "Implementing Public Key Infrastructure for sensor networks"
- The first implementation of ECC (over  $F_{2^p}$ ) for sensor networks on the 8-bit, 7.38 MHz MICA2 mote
- Use a 163-bit key for distribution of the 80-bit TinySec keys

|                       | Private-Key Generation     | Public-Key Generation      |
|-----------------------|----------------------------|----------------------------|
| Total Time            | 0.229 sec                  | 34.161 sec                 |
| Total CPU Utilization | $1.690 \times 10^6$ cycles | $2.512 \times 10^8$ cycles |
| Total Energy          | 0.00549 Joules             | 0.816 Joules               |

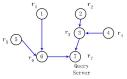
- Generation of private keys in 0.229 seconds
- Generation of public keys in 34 seconds using 1Kb of SRAM and 34Kb of ROM


# ECC in WSN (2/2)

- An Liu and Peng Ning- "TinyECC: A configurable library for elliptic curve cryptography in wireless sensor networks" (IPSN 2008)
- Implementation of ECC over F<sub>p</sub> with elliptic curve parameters recommended by SECG (128-bit, 160-bit and 192-bit)
- Implementation on TinyOS for portability. Platforms MICAz, TelosB, Tmote Sky and Imote2
- Implementation of ECIES, ECDSA and ECDH
- Optimization techniques for large numbers operations (inline assembly) and elliptic curve operations




# Privacy in WSN


- Protecting sensor information
- He, Liu, Nguyen, Nahrstedt, Abdelzaher- "Privacy Preserving Data Aggregation in Wireless Sensor Networks", INFOCOM 2007
- WSN may be placed in homes, hospitals, companies buildings.Need for a way to collect the aggregated sensor readings while preserving data privacy
- SMART: Slice Mix Aggregate.Based on pair-wise key pre-distribution
- Three phases: Slicing, Mixing, Aggregation



(a) Slicing  $(J = 3, h = 1):d_{ij}(i \neq j)$  is encrypted and transmitted from node i to j, where  $j \notin S_i$ .  $d_{ii}$  is the data piece kept at node i.



(b) Mixing: Each node *i* decrypts all data pieces received and sums them up including the one kept at itself  $(d_{ii})$  as  $r_i$ .



(c) Aggregation (No encryption is needed)

## Conclusions

- Building secure sensor networks is of paramount importance but it is quite difficult
- Privacy issues should be considered depending on the application
- A single solution is highly vulnerable
- Cryptography alone is not enough
  - Public-key cryptography is computationally expensive
  - ECC provides performance benefits (should be combined with symmetric-key techniques)
- Multi-level Approach: only viable solution is to combine different techniques for securing the system
  - design protocols (routing schemes, data aggregation,time synchronization, localization) with respect to security principles
  - use carefully the key management methods and mechanisms
  - the combination of multiple attacking angles increases the overall achieved security

イロト イポト イヨト イヨト

## Outline

Cryptography
 Public vs Symmetric Key Cryptography
 Key Establishment
 Elliptic Curve Cryptography

Security in Wireless Sensor Networks Attacks and Countermeasures in WSN Key Distribution in WSN ECC in WSN

Wiselib + Crypto pMP The Crypto Concept SecRouting Concept

### pMP

- Multi-precision arithmetic is necessary in embedded systems (cryptography, data aggregation)
- A variety of software libraries that implement big-number operations (GNUMP)
- Most of them rely on dynamic memory allocation to represent big-numbers and carry out the operations
- Optimized assembly code is used for performance speedups
- Very difficult to port such implementations to sensor platforms
- pMP: implementation of big number operations without use of dynamic memory allocation
- Basic operations for elliptic curve cryptography over  $F_{2^p}$

- 4 同 6 4 日 6 4 日 6

## The Crypto Concept

#### The Crypto Concept

```
template<typename OsModel>
class CryptoConcept {
  typedef ... Os;
  typedef ... node_id_t;
  typedef ... block_data_t;
  void set_os( OsModel* os );
  void enable( void ):
   void disable( void );
   void key_setup(node_id_t,block_data_t* key);
   void encrypt(block_data_t* input,block_data_t* output,int8_t length);
   void decrypt(block_data_t* input,block_data_t* output,int8_t length);
};
```

## Routing Concept

#### The Routing Concept

```
template<typename OsModel, typename Radio = OsModel::Radio>
class RoutingAlgorithmConcept {
```

## Routing + Crypto Combination

- Combination of any routing algorithm with any crypto algorithm
- Not a single change in their code

#### The Secure Routing Concept

伺 ト イヨト イヨト

# A SecRouting Example

• The file "crypto.h"

#### A crypto algorithm

```
template<typename OsModel_P>
   class crypto
   ſ
   void enable( void );
   void disable( void );
   . . .
template<typename OsModel_P>
   void
   crypto<OsModel_P>::
   ECIES_encrypt(uint8_t * a,uint8_t * b,int8_t length )
   {...}
template<typename OsModel_P>
  void
   crvpto<OsModel P>::
  ECIES_decrypt(uint8_t * a,uint8_t * b,int8_t length)
   {...}
```

#### SecRouting Concept

# The SecRouting Class

The file "sec\_routing.h"

The Enable Function

```
template<typename OsModel, typename Radio,typename crypto,typename Routing>
void
SecRouting<OsModel,Radio ,crypto, Routing>::
enable( void )
  Ł
 routing.enable():
 routing.reg_recv_callback<self_type,&self_type::receive>(this);
 crypto.enable();
  3
```

#### The Send Function

```
template<typename OsModel,typename Radio,typename crypto,typename Routing>
void
SecRouting<OsModel, Radio,crvpto, Routing>::
send( node_id_t receiver, size_t len, block_data_t *data )
  ſ
 crypto.ECIES_encrypt(data,buffer,len);
 routing.send(receiver,len,buffer);
```

3

## A SecRouting Example Application

#### $\mathsf{Dsdv} + \mathsf{Crypto}$

```
#include "algorithms/routing/dsdv_routing.h"
#include "algorithms/crypto/crypto.h"
#include "algorithms/secrouting/sec routing.h"
typedef wiselib:::iSenseOsModel Os;
typedef wiselib::StaticArrayRoutingTable<Os. Os::Radio. 8.
wiselib::DsdvRoutingTableValue<Os, Os::Radio> > DsdvRoutingTable;
typedef wiselib::DsdvRouting<Os, DsdvRoutingTable> dsdv_routing_t;
typedef wiselib::crypto<Os> crypto_t;
typedef wiselib::SecRouting<Os.Os::Radio.crypto t.dsdy routing t> secrouting t:
void
iSenseDemoApplication::
boot(void)
secrouting .set os( &os() ):
secrouting .enable():
secrouting_.reg_recv_callback<iSenseDemoApplication,
  &iSenseDemoApplication::receive_routing_message>(this);
}
. . . .
void
iSenseDemoApplication::
execute( void* userdata )
secrouting .send():
```

#### The End

Thank you very much!

<ロ> <同> <同> < 同> < 同>