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o Aggregate locations are useful for performing mobility
analytics, e.g., predicting traffic volumes, detecting anomalies

o Aggregation is often considered a privacy-friendly approach,
especially when done in a privacy-preserving way

@ Open Problem: No sound methodology to reason about
privacy leakage for individuals from the aggregates

@ ...no way to evaluate potential defense mechanisms
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In this work...

We introduce a framework to address this gap

We use it to measure users’' privacy loss from aggregate
location time-series

We evaluate two real-world mobility datasets (TFL, SFC)

@ We study the privacy protection offered by defense
mechanisms based on DP (output and input perturbation)

o Raw aggregates do leak information about users’ locations
and mobility profiles

@ DP provides strong privacy protection when the utility of the
aggregates is poor
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Adversarial Prior Knowledge

Prior knowledge might come from social networks, data leaks,
location traces released by providers or personal knowledge,
e.g. home / work pair

In this work, we explore several possible approaches
Probabilistic:

o Frequency of locations (over time)
o Location Seasonality (day / week)

e Assignment:

Most popular locations
o All prior locations
o Last Season (hour / day / week)
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Inference Strategies

o Bayesian Update:
o Posterior probability of a user being in a location at a certain
time, given the prior and the aggregates

e MAX-ROI:

o Greedy strategy that assigns the most probable users to each
location, until the aggregates are consumed

o MAX-USER:

o Greedy strategy that assigns each user to her most likely
locations, until the aggregates are consumed
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Timeline

@ Observation Period: used to build prior knowledge for each
user

o Inference period: launch the attacks
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User Profiling:

@ Infer the probability of a user being in a location at a certain
time

@ Adversarial Error: JS-divergence from the ground truth
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Adversarial Goals

User Profiling:

@ Infer the probability of a user being in a location at a certain
time
@ Adversarial Error: JS-divergence from the ground truth

User Localization:

@ Predict where the user will be at a certain time

@ Adversarial Error: 1 - F1
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Privacy Loss (PL):

@ normalized reduction in adversarial error with vs without the
aggregates
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@ 60M trips - 4M unique oyster cards - 582 stations (regions of
interest - ROls)

@ Monday, March 1 - Sunday, March 28, 2010

@ Sample the top 10K oyster ids per total # of trips, being
active for 115 4+ 21 out of the 672 timeslots and reporting
171 + 26 ROls in total (sparse, regular)
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Tranport For London (TFL):

@ 60M trips - 4M unique oyster cards - 582 stations (regions of
interest - ROls)

@ Monday, March 1 - Sunday, March 28, 2010

@ Sample the top 10K oyster ids per total # of trips, being
active for 115 4+ 21 out of the 672 timeslots and reporting
171 + 26 ROls in total (sparse, regular)

San Francisco Cabs (SFC):
@ 11M GPS coordinates - 534 cabs in SF - May 19 to June 8,
2008
@ Grid 10 x 10 = 100 ROIs of 0.5 x 0.37 mi?
@ Taxis are active for 340 4+ 94 out of the 504 timeslots and
report 3,663 & 1,116 ROls in total (dense, irregular)

Prior Knowledge: Split data according to time
Inference Period: Last week of each dataset
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Prior Knowledge: Location frequency, over the observation period
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User Profiling

Prior Knowledge: Location frequency, over the observation period
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TFL vs. SFC: Inferring mobility profiles of commuters easier than
cabs

A. Pyrgelis, C. Troncoso, E. De Cristofaro Evaluating Aggregation-Based Location Privacy



Implications of Regular Mobility Patterns

A. Pyrgelis, C. Troncoso, E. De Cristofaro Evaluating Aggregation-Based Location Privacy



Implications of Regular Mobility Patterns

Prior Knowledge: Location frequency, for time instances of any
day
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Implications of Regular Mobility Patterns

Prior Knowledge: Location frequency, for time instances of any
day
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User Localization

Prior Knowledge: Location frequency, for time instances of a
week
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User Localization

Prior Knowledge: Location frequency, for time instances of a

week
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TFL vs SFC: Commuters are best localized via their most popular
ROls, whereas cabs via their last hour's ROls
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Take Aways

Aggregates do help the adversary to profile and localize users

@ Degree of privacy loss depends on the prior

@ Assignment priors yield smaller privacy leakage compared to
probabilistic ones
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Evaluation of Defenses

@ Location aggregates is a suitable setting for differential
privacy (DP)

@ How much privacy does DP provide? (with respect to € and
utility)

e Privacy Gain (PG): Normalized increase in adversarial error
given DP aggregates compared to that with raw aggregates

e Utility: Mean Relative Error (MRE)
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Output Perturbation (1 / 2)

Simple Counter Mechanism (SCM)
@ Provides event-level privacy, i.e., it protects whether or not a
user was in a specific location at a specific time

e Can be configured to achieve stronger guarantees, (e.g., e-DP)
Fourier Perturbation Algorithm (FPA)

@ Improves the privacy/utility trade-off by reducing the amount
of noise required

@ Noise addition is done on the compressed domain (DFT),
e-DP per time-series
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Randomized Response
@ SpotMe mechanism is focused on aggregate location
time-series

@ Users report to be in a location with some probability p, or
report the truth with probability 1 — p
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Input Perturbation (1 / 2)

Randomized Response
@ SpotMe mechanism is focused on aggregate location
time-series

@ Users report to be in a location with some probability p, or
report the truth with probability 1 — p

o Aggregator collects user perturbed inputs and estimates the
aggregates
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Conclusion

@ We presented a framework that allows us to reason about
individuals’ privacy loss from aggregate location time-series
release

@ Location aggregates enable an adversary with some prior
knowledge to profile and localize users

@ DP mechanisms improve privacy when the utility of the
time-series is poor

@ Need for novel defense mechanisms for privacy-friendly
mobility analytics
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