

Measuring Membership Privacy on Aggregate Location Time-Series ACM SIGMETRICS 2020

Apostolos Pyrgelis ¹, Carmela Troncoso ¹, and Emiliano De Cristofaro ²

¹ EPFL ² UCL & Alan Turing Institute

Introduction

Mobility analytics are useful in modern cities for journey planning, etc.

Large-scale collection and usage of individual users' location data prompts privacy concerns

Pseudonymization / anonymization of location traces is **ineffective**

Let There Be Aggregation

Analysts are given access to aggregate location statistics, e.g., time-series

Privacy-Friendly: Individual user data is hidden in the crowd!

Utility: Forecasting Traffic

Anomaly Detection

Hotspot Discovery

Map Inference

Real World Use Cases: Uber Movement, Waze, Telefonica Smart Steps

But, Location Aggregates Leak Privacy

- Recent research has shown that location aggregates can be exploited for:
 - User Profiling / Localization (PETS'17)

Trajectory Extraction (WWW'17)

Membership Inference (NDSS'18)

- 1) Important privacy implications if the aggregates relate to a group sharing a sensitive characteristic, e.g., disease, income, etc.
- 2) A first step to other more invasive attacks

In This Work

 Measurement study to understand Membership Inference attacks (MIAs) on aggregate location time-series

- Which spatio-temporal factors contribute to the inference?
- Which users are more vulnerable than others?
- How well defense strategies based on generalization, hiding, and perturbation protect against MIAs?
- How do these defenses perform wrt. mobility analytics tasks?
 e.g., traffic forecasting, hotspot discovery, etc.

Real-world Mobility Datasets

Transport for London (TFL)

- Oyster Card trips of London commuters
- Monday, March 1 to Sunday March 28, 2010 (4 weeks)
- 60M trips / 4M users / 582 stations (ROIs)
- Sparse / Regular

San Francisco Cabs (SFC)

- GPS mobility traces of taxis in SF
- May 19 June 8, 2008 (3 weeks)
- 11M coordinates / 534 cabs / 10x10 downtown grid (ROIs)
- Dense / Irregular

Generate hourly time-series, # of users in a ROI

Outline

Understanding MIAs

- Evaluating Defenses against MIAs
- Studying Privacy-Utility Tradeoffs

Methodology

Adversarial Prior Knowledge:

- Target's Location Data
- Target's Past Location Patterns

Target Users

Randomly pick 150 users from 3 mobility groups and run MIA

Sample & Aggregate

Balanced dataset of groups that include / exclude the target and aggregate their locations

Classification

Use of a Logistic Regression classifier

Dimensionality Reduction

Use of Principal Component Analysis (PCA)

Prior: Target's Past Location Patterns

Group Size: 9,5K

Prior: Target's Location Data

Group Size: 100

Mobility Characteristics

Feature	TFL	SFC
Total Events	0.03	0.17
Unique Locations	0.39	0.01
Active Timeslots	0.06	0.23
Locations per Timeslot	0.05	0.30
Active Timeslots / Weekday	0.01	0.01
Active Timeslots / Weekend	0.11	0.01
Events / Weekday	0.01	0.07
Events / Weekend	0.13	0.03
Spatial Entropy	0.01	0.03
Temporal Entropy	0.06	0.01
Unicity	0.16	0.17

Prior: Target's Location Data

Take Aways

- Various spatio-temporal factors (e.g., commuting patterns, dense GPS trajectories) contribute to the attack
- Users contributing more data points to the aggregates are more susceptible to MIA
- Movements in sparse locations/times ease MIA
- Unique mobility patterns are identifiable in the aggregates
- Regular mobility patterns reveal users' membership to the aggregates

Outline

Understanding MIAs

Evaluating Defenses against MIAs

Studying Privacy-Utility Tradeoffs

• **Generalization:** Spatial, Temporal, Data

• **Generalization:** Spatial, Temporal, Data

• Hiding: Sampling, Suppression

Suppression

Generalization: Spatial, Temporal,
 Data

Hiding: Sampling, Suppression

Perturbation: Differential privacy,
 Crowd-blending privacy

	Time			
	53	57	45	58
Space	119	260	279	166
ce	15	16	18	17
	50	68	21	78

Noise Mask

Time Perturbation

• **Generalization:** Spatial, Temporal, Data

• Hiding: Sampling, Suppression

Perturbation: Differential privacy,
 Crowd-blending privacy

Privacy Gain: Normalized decrease in the attack's performance given the defended vs raw aggregates

Take Aways

- Spatio-temporal generalization does not protect against MIA - data generalization can be configured to do so
- Hiding techniques work better when the input signal is sparse
- Perturbation techniques that achieve DP yield high privacy – similar protection levels can be reached with less noise

Combining defenses can improve privacy

Outline

Understanding MIAs

- Evaluating Defenses against MIAs
- Studying Privacy-Utility Tradeoffs

Mobility Analytics

Task	Metric	
Forecasting Traffic	Mean Relative Error	
Anomaly Detection	(Pearson's) Correlation	
Hotspot Discovery	F1 Score	
Map Inference	Distribution Similarity (Jensen Shannon)	

Utility Loss: Decrease in utility compared to performing the same task on *raw* aggregate location time-series

Privacy-Utility Tradeoffs

Forecasting Traffic

Hotspot Discovery

Transport for London

Take Aways

- Different defenses yield variable tradeoffs for various analytics
- No single defense preserves the utility of the analytics for arbitrary applications
- Spatio-temporal generalization yields poor privacy and utility
- Other defenses can achieve reasonable tradeoffs for **specific** tasks:
 - Data generalization forecasting traffic
 - Hiding map inference
 - Perturbation hotspot discovery
 - Combining hiding + perturbation anomaly detection

Conclusion

- Measurement study to understand Membership Inference Attacks (MIAs) on aggregate location time-series
 - Regular/uncommon mobility patterns are easy to recognize
 - **Size matters:** users contributing more data to the aggregates are easier to attack
 - There is no single characteristic that can be singled out and thwart the attack
 - There does not exist a single defense that protects against MIA while enabling arbitrary mobility analytics
 - Different defenses yield variable privacy-utility tradeoffs for different settings and analytics
 - Some defenses yield reasonable tradeoffs for specific tasks

There is need for work on the design of novel defenses!

The end...

Thank you for your attention!

For more details, see our full paper: https://arxiv.org/abs/1902.07456

Contact Details: apostolos.pyrgelis@epfl.ch