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Motivation

Mobility analytics are useful in modern cities - journey
planning, congestion prevention, improving transportation
service levels

But, large scale collection of individual users’ location data
raises privacy concerns (life-style, political / religious
inclinations)

Anonymization of location traces is ineffective
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Our Proposal

Our approach : data aggregation for gathering location
statistics

Our goals :

1 usefulness of aggregate locations for mobility analytics

2 real-world deployability of a system for privacy-friendly location
data collection via crowd-sourcing
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Roadmap

Experiment with real-world mobility datasets (TFL, SFC)

Methodology for performing mobility analytics over aggregate
locations

1 forecasting traffic volumes in regions of interest (ROIs)
2 detecting mobility anomalies
3 improving traffic volume predictions in the presence of

anomalies

Design a privacy-respecting system for crowd-sourcing
location data

Empirical evaluation of computation / communication /
energy complexities
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Transport for London (TFL)

Logs of anonymized oyster card trips including Underground
(LUL), National Rail (NR), Overground (LRC), Docklands
Light Railway (DLR)

Monday, March 1 to Sunday, March 28, 2010 (4 weeks)

60 million trips as performed by 4 million unique users, over
582 stations

We build hourly time series (TS) of stations (Yt), counting #
of users tapping-in/out at each station
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TFL Aggregates
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We observe daily / weekly seasonality and stationarity
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San Francisco Cab Network (SFC)

Mobility traces of 536 cabs
in San Francisco between
May 19 to June 8, 2008 (3
weeks)

11 million GPS coordinates

San Francisco grid of 100 x
100 regions, each of
0.19× 0.14 sq mi

We build hourly time series
(TS) for ROIs (Yt),
counting # of taxis that
have reported presence
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SFC Aggregates
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Removing Seasonality

Additive decomposition of TS : Dt = Yt − Yt
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De-seasonalized time series (Dt) show strong auto-regressive
structure
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Forecasting Traffic Volumes in ROIs

ARMASEAS modeling

Ŷt = D̂t + Yt , using a sliding window

Evaluate accuracy via absolute forecast error (et = |Yt − Ŷt |)
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Experiments
Forecasting Traffic Volumes in ROIs

Experiment with top 100 TFL stations and SFC ROIs

5 days of data for training (Dt) - 1 day of testing (Ŷt vs Yt)
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Comparison to a baseline black-box ARMA model on Yt

Improved predictions when considering seasonal effects (e.g.
TFL average error : 19% vs 600%)
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01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00
Time of Day

1000

0

1000

2000

3000

4000

5000

6000

7000

8000

#
 o

f 
O

y
st

e
rs

Green Park

Original Time Series

Forecast

Green Park Predictions, March 25.

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00
Time of Day

0

20

40

60

80

100

120

140

#
 o

f 
C

a
b
s

Block Region 8755

Original Time Series

Forecast

Region 8755 Predictions, June 5.

Comparison to a baseline black-box ARMA model on Yt

Improved predictions when considering seasonal effects (e.g.
TFL average error : 19% vs 600%)

A. Pyrgelis, E. De Cristofaro, G. Ross, UCL Privacy-Friendly Mobility Analytics using Aggregate Locations



Experiments
Forecasting Traffic Volumes in ROIs

Experiment with top 100 TFL stations and SFC ROIs

5 days of data for training (Dt) - 1 day of testing (Ŷt vs Yt)
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Detecting Traffic Anomalies in ROIs

ARMASEAS modeling - rely on absolute forecast error (et)

Apply the 3σ rule, with confidence interval : λ = µ+ 3σ

Detect an anomaly at time t if : et > λ
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Experiments
Detecting Traffic Anomalies in ROIs

Train the ARMASEAS model with 1 week data, test it against
the rest of weeks

Top 100 TFL stations : 896 anomalies

Top 100 SFC blocks: 366 anomalies
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Predicting Traffic Volumes during Anomalies

Can we improve our predictions in the presence of an
anomaly?

Discover correlated ROIs by sliding their time series -
(Spearman correlation)

Use a VAR model to capture linear inter-dependencies
between time series
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Experiments
Predicting Traffic Volumes during Anomalies

Experiment with 10% of anomalies of TFL (90 anoms) and
SFC (30 anoms)
Train a VAR model including information from 10 correlated
ROIs
Compare against a baseline : ARMASEAS model trained on
local data
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Experiments
Predicting Traffic Volumes during Anomalies

Overall, significant improvement in predictions when
considering information from correlated ROIs

TFL : 29% improvement in predictions

SFC : 18% improvement in predictions
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What next?

Analytics on aggregate locations offer interesting insights

Can we collect aggregate locations directly from users, with
privacy?

Challenges : Efficiency, scalability, fault-tolerance

Good news: promising results by Melis et al. (NDSS 2016)
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Analytics on aggregate locations offer interesting insights

Can we collect aggregate locations directly from users, with
privacy?

Challenges : Efficiency, scalability, fault-tolerance

Good news: promising results by Melis et al. (NDSS 2016) 1

1Luca Melis, George Danezis, and Emiliano De Cristofaro : Efficient private
statistics with succinct sketches, NDSS (2016).
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Mobility Data Donors (MDD) Framework

Design a collaborative framework for aggregate location data
collection (users vs aggregator)

Client Side:

Users install MDD app
MDD runs on the background, collecting GPS coordinates
Aggregator periodically triggers privacy-preserving aggregation,
assigning users to groups
MDD encrypts entries in the matrix that represents user
locations

Server side:

Aggregator collects the encrypted matrices and decrypts
ONLY aggregate location counts - combines aggregates if
collected from multiple groups
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MDD Experimental Evaluation

Javascript/Node.js implementation of the secure aggregation
protocol by Melis et al.

Port of client side to run on Android, via Apache Cordova

Cryptographic operations : Edc25519 elliptic curve - 128 bit
security

Android device : Samsung Galaxy A3, 1.2 GHz quad-core
Snapdragon 410, 1.5 GB RAM, Lollipop v5.0.2

PowerTutor app for power monitoring
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Results - TFL

ROI matrix of size (582, 2)

∼ 7s encryption for groups
of 200 mobile users
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grained data need to be collected (e.g. O-D matrices)
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Conclusions

Mobility analytics over crowd-sourced aggregate location data

Time series modeling with seasonality for:
1 forecasting traffic volumes in ROIs
2 detecting anomalies
3 improving traffic volume predictions in the presence of

anomalies

Experiments on real-world mobility datasets (TFL, SFC)

Privacy-respecting system for data collection

Mobile application framework (MDD) and empirical evaluation
in terms of computation / communication / energy overhead
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Future Work

Evaluate our methodology on different mobility datasets

Privacy quantification and analysis of aggregate location data

group sizes
characteristics of ROIs (density, size, time)
semantics of ROIs
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The end...

Thanks for your attention! Any questions?

Contact Details: apostolos.pyrgelis.14@ucl.ac.uk
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