Privacy-Friendly Mobility Analytics using Aggregate Location Data ACM SIGSPATIAL 2016

Apostolos Pyrgelis, Emiliano De Cristofaro, Gordon Ross University College London

November 3, 2016

 Mobility analytics are useful in modern cities - journey planning, congestion prevention, improving transportation service levels

- Mobility analytics are useful in modern cities journey planning, congestion prevention, improving transportation service levels
- But, large scale collection of individual users' location data raises privacy concerns (life-style, political / religious inclinations)

- Mobility analytics are useful in modern cities journey planning, congestion prevention, improving transportation service levels
- But, large scale collection of individual users' location data raises privacy concerns (life-style, political / religious inclinations)
- Anonymization of location traces is ineffective

• Our approach : data aggregation for gathering location statistics

- Our approach : data aggregation for gathering location statistics
- Our goals :

- Our approach : data aggregation for gathering location statistics
- Our goals :
 - usefulness of aggregate locations for mobility analytics

- Our approach : data aggregation for gathering location statistics
- Our goals :
 - usefulness of aggregate locations for mobility analytics
 - eal-world deployability of a system for privacy-friendly location data collection via crowd-sourcing

• Experiment with real-world mobility datasets (TFL, SFC)

- Experiment with real-world mobility datasets (TFL, SFC)
- Methodology for performing mobility analytics over aggregate locations
 - forecasting traffic volumes in regions of interest (ROIs)
 - detecting mobility anomalies
 - improving traffic volume predictions in the presence of anomalies

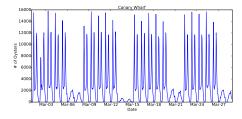
- Experiment with real-world mobility datasets (TFL, SFC)
- Methodology for performing mobility analytics over aggregate locations
 - forecasting traffic volumes in regions of interest (ROIs)
 - detecting mobility anomalies
 - improving traffic volume predictions in the presence of anomalies
- Design a privacy-respecting system for crowd-sourcing location data
- Empirical evaluation of computation / communication / energy complexities

 Logs of anonymized oyster card trips including Underground (LUL), National Rail (NR), Overground (LRC), Docklands Light Railway (DLR)

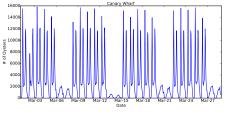
- Logs of anonymized oyster card trips including Underground (LUL), National Rail (NR), Overground (LRC), Docklands Light Railway (DLR)
- Monday, March 1 to Sunday, March 28, 2010 (4 weeks)

- Logs of anonymized oyster card trips including Underground (LUL), National Rail (NR), Overground (LRC), Docklands Light Railway (DLR)
- Monday, March 1 to Sunday, March 28, 2010 (4 weeks)
- 60 million trips as performed by 4 million unique users, over 582 stations

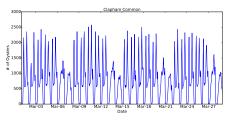
- Logs of anonymized oyster card trips including Underground (LUL), National Rail (NR), Overground (LRC), Docklands Light Railway (DLR)
- Monday, March 1 to Sunday, March 28, 2010 (4 weeks)
- 60 million trips as performed by 4 million unique users, over 582 stations
- We build hourly time series (TS) of stations (Y_t) , counting # of users tapping-in/out at each station



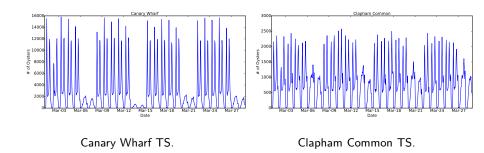
Canary Wharf TS.



Canary Wharf TS.



Clapham Common TS.



We observe daily / weekly **seasonality** and stationarity

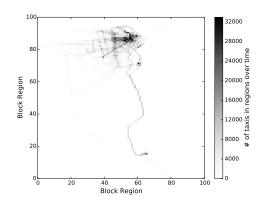
 Mobility traces of 536 cabs in San Francisco between May 19 to June 8, 2008 (3 weeks)

- Mobility traces of 536 cabs in San Francisco between May 19 to June 8, 2008 (3 weeks)
- 11 million GPS coordinates

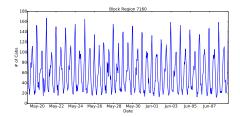
- Mobility traces of 536 cabs in San Francisco between May 19 to June 8, 2008 (3 weeks)
- 11 million GPS coordinates
- San Francisco grid of 100×100 regions, each of 0.19×0.14 sq mi

- Mobility traces of 536 cabs in San Francisco between May 19 to June 8, 2008 (3 weeks)
- 11 million GPS coordinates
- San Francisco grid of 100×100 regions, each of 0.19×0.14 sq mi
- We build hourly time series (TS) for ROIs (Y_t), counting # of taxis that have reported presence

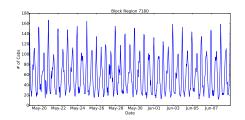
- Mobility traces of 536 cabs in San Francisco between May 19 to June 8, 2008 (3 weeks)
- 11 million GPS coordinates
- San Francisco grid of 100×100 regions, each of 0.19×0.14 sq mi
- We build hourly time series (TS) for ROIs (Y_t), counting # of taxis that have reported presence



SFC 100×100 grid.



Region 7160 TS.



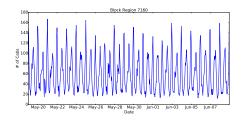
O Maj-20 Maj-22 Maj-24 Maj-26 Maj-26 Maj-30 Jun-01 Jun-03 Jun-05

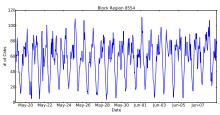
100

Region 7160 TS.

Region 8554 TS.

Block Region 8554





Region 7160 TS.

Region 8554 TS.

We observe daily, weekly patterns and stationarity

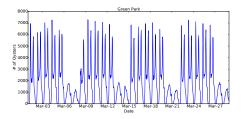
Removing Seasonality

Removing Seasonality

Additive decomposition of TS : $D_t = Y_t - \overline{Y_t}$

Removing Seasonality

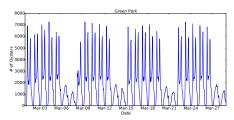
Additive decomposition of TS : $D_t = Y_t - \overline{Y_t}$



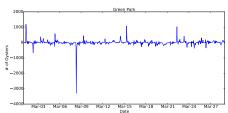
Green Park Aggregate TS.

Removing Seasonality

Additive decomposition of TS : $D_t = Y_t - \overline{Y_t}$



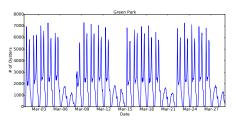
Green Park Aggregate TS.

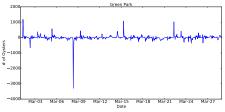


Green Park De-seasonalized TS.

Removing Seasonality

Additive decomposition of TS : $D_t = Y_t - \overline{Y_t}$





Green Park Aggregate TS.

Green Park De-seasonalized TS.

De-seasonalized time series (D_t) show strong **auto-regressive** structure

ARMA_{SEAS} modeling

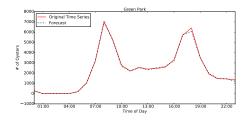
- ARMA_{SEAS} modeling
- $ullet \ \widehat{Y_t} = \widehat{D_t} + \overline{Y_t}$, using a sliding window

- ARMA_{SEAS} modeling
- $ullet \widehat{Y_t} = \widehat{D_t} + \overline{Y_t}$, using a sliding window
- Evaluate accuracy via absolute forecast error $(e_t = |Y_t \widehat{Y}_t|)$

• Experiment with top 100 TFL stations and SFC ROIs

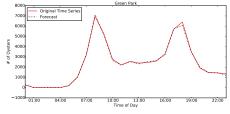
- Experiment with top 100 TFL stations and SFC ROIs
- 5 days of data for training (D_t) 1 day of testing $(\widehat{Y_t} \text{ vs } Y_t)$

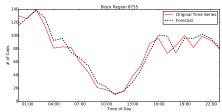
- Experiment with top 100 TFL stations and SFC ROIs
- 5 days of data for training (D_t) 1 day of testing $(\widehat{Y}_t \text{ vs } Y_t)$



Green Park Predictions, March 25.

- Experiment with top 100 TFL stations and SFC ROIs
- 5 days of data for training (D_t) 1 day of testing $(\widehat{Y}_t \text{ vs } Y_t)$

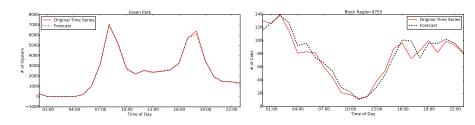




Green Park Predictions, March 25.

Region 8755 Predictions, June 5.

- Experiment with top 100 TFL stations and SFC ROIs
- 5 days of data for training (D_t) 1 day of testing $(\widehat{Y}_t \text{ vs } Y_t)$

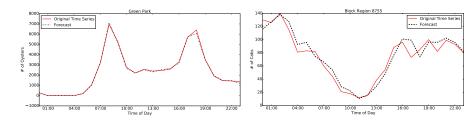


Green Park Predictions. March 25.

Region 8755 Predictions, June 5.

ullet Comparison to a baseline black-box ARMA model on Y_t

- Experiment with top 100 TFL stations and SFC ROIs
- 5 days of data for training (D_t) 1 day of testing $(\widehat{Y_t}$ vs $Y_t)$



Green Park Predictions, March 25.

Region 8755 Predictions, June 5.

- ullet Comparison to a baseline black-box ARMA model on Y_t
- **Improved** predictions when considering seasonal effects (e.g. TFL average error : 19% vs 600%)

• ARMA_{SEAS} modeling - rely on absolute forecast error (e_t)

- ARMA_{SEAS} modeling rely on absolute forecast error (e_t)
- Apply the 3σ rule, with confidence interval : $\lambda = \mu + 3\sigma$

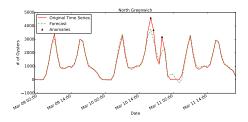
- ARMA_{SEAS} modeling rely on absolute forecast error (e_t)
- Apply the 3σ rule, with confidence interval : $\lambda = \mu + 3\sigma$
- Detect an anomaly at time t if : $e_t > \lambda$

• Train the ARMA_{SEAS} model with 1 week data, test it against the rest of weeks

- Train the ARMA_{SEAS} model with 1 week data, test it against the rest of weeks
- Top 100 TFL stations : 896 anomalies

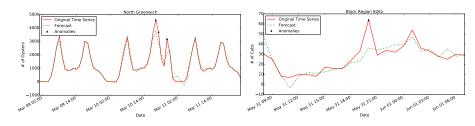
- Train the ARMA_{SEAS} model with 1 week data, test it against the rest of weeks
- Top 100 TFL stations: 896 anomalies
- Top 100 SFC blocks: 366 anomalies

- Train the ARMA_{SEAS} model with 1 week data, test it against the rest of weeks
- Top 100 TFL stations: 896 anomalies
- Top 100 SFC blocks: 366 anomalies



North Greenwich, March 10.

- Train the ARMA_{SEAS} model with 1 week data, test it against the rest of weeks
- Top 100 TFL stations: 896 anomalies
- Top 100 SFC blocks: 366 anomalies



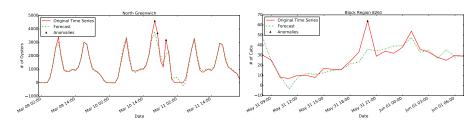
North Greenwich, March 10.

Region 8261, May 31.

 Train the ARMA_{SEAS} model with 1 week data, test it against the rest of weeks

• Top 100 TFL stations: 896 anomalies

Top 100 SFC blocks: 366 anomalies



North Greenwich, March 10.

Region 8261, May 31.

Note: no ground truth for anomalies

 Can we improve our predictions in the presence of an anomaly?

- Can we improve our predictions in the presence of an anomaly?
- Discover correlated ROIs by sliding their time series -(Spearman correlation)

- Can we improve our predictions in the presence of an anomaly?
- Discover correlated ROIs by sliding their time series -(Spearman correlation)
- Use a VAR model to capture linear inter-dependencies between time series

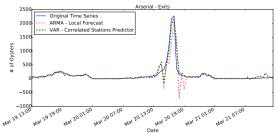
Predicting Traffic Volumes during Anomalies

• Experiment with 10% of anomalies of TFL (90 anoms) and SFC (30 anoms)

- Experiment with 10% of anomalies of TFL (90 anoms) and SFC (30 anoms)
- Train a VAR model including information from 10 correlated ROIs

- Experiment with 10% of anomalies of TFL (90 anoms) and SFC (30 anoms)
- Train a VAR model including information from 10 correlated ROIs
- Compare against a baseline : ARMA_{SEAS} model trained on local data

- Experiment with 10% of anomalies of TFL (90 anoms) and SFC (30 anoms)
- Train a VAR model including information from 10 correlated ROIs
- Compare against a baseline : ARMA_{SEAS} model trained on local data



Arsenal Exit Traffic Predictions during an Anomaly, March 20.

ARMA_{SEAS} Error 93% vs VAR Error 59%

Experiments Predicting Traffic Volumes during Anomalies

 Overall, significant improvement in predictions when considering information from correlated ROIs

Experiments Predicting Traffic Volumes during Anomalies

- Overall, significant improvement in predictions when considering information from correlated ROIs
- TFL : 29% improvement in predictions

Experiments Predicting Traffic Volumes during Anomalies

- Overall, significant improvement in predictions when considering information from correlated ROIs
- TFL : 29% improvement in predictions
- SFC : 18% improvement in predictions

• Analytics on aggregate locations offer interesting insights

- Analytics on aggregate locations offer interesting insights
- Can we collect aggregate locations directly from users, with privacy?

- Analytics on aggregate locations offer interesting insights
- Can we collect aggregate locations directly from users, with privacy?
- Challenges : Efficiency, scalability, fault-tolerance

- Analytics on aggregate locations offer interesting insights
- Can we collect aggregate locations directly from users, with privacy?
- Challenges: Efficiency, scalability, fault-tolerance
- Good news: promising results by Melis et al. (NDSS 2016) ¹

¹Luca Melis, George Danezis, and Emiliano De Cristofaro: Efficient private statistics with succinct sketches, NDSS (2016).

 Design a collaborative framework for aggregate location data collection (users vs aggregator)

- Design a collaborative framework for aggregate location data collection (users vs aggregator)
- Client Side:

- Design a collaborative framework for aggregate location data collection (users vs aggregator)
- Client Side:
 - Users install MDD app

- Design a collaborative framework for aggregate location data collection (users vs aggregator)
- Client Side:
 - Users install MDD app
 - MDD runs on the background, collecting GPS coordinates

- Design a collaborative framework for aggregate location data collection (users vs aggregator)
- Client Side:
 - Users install MDD app
 - MDD runs on the background, collecting GPS coordinates
 - Aggregator periodically triggers privacy-preserving aggregation, assigning users to groups

 Design a collaborative framework for aggregate location data collection (users vs aggregator)

Client Side:

- Users install MDD app
- MDD runs on the background, collecting GPS coordinates
- Aggregator periodically triggers privacy-preserving aggregation, assigning users to groups
- MDD encrypts entries in the matrix that represents user locations

- Design a collaborative framework for aggregate location data collection (users vs aggregator)
- Client Side:
 - Users install MDD app
 - MDD runs on the background, collecting GPS coordinates
 - Aggregator periodically triggers privacy-preserving aggregation, assigning users to groups
 - MDD encrypts entries in the matrix that represents user locations
- Server side:

 Design a collaborative framework for aggregate location data collection (users vs aggregator)

Client Side:

- Users install MDD app
- MDD runs on the background, collecting GPS coordinates
- Aggregator periodically triggers privacy-preserving aggregation, assigning users to groups
- MDD encrypts entries in the matrix that represents user locations

Server side:

Aggregator collects the encrypted matrices and decrypts
 ONLY aggregate location counts - combines aggregates if collected from multiple groups

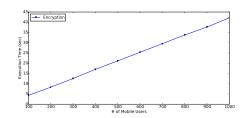
- Javascript/Node.js implementation of the secure aggregation protocol by Melis et al.
- Port of client side to run on Android, via Apache Cordova

- Javascript/Node.js implementation of the secure aggregation protocol by Melis et al.
- Port of client side to run on Android, via Apache Cordova
- Cryptographic operations: Edc25519 elliptic curve 128 bit security

- Javascript/Node.js implementation of the secure aggregation protocol by Melis et al.
- Port of client side to run on Android, via Apache Cordova
- Cryptographic operations: Edc25519 elliptic curve 128 bit security
- Android device: Samsung Galaxy A3, 1.2 GHz quad-core Snapdragon 410, 1.5 GB RAM, Lollipop v5.0.2

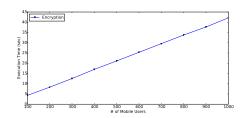
- Javascript/Node.js implementation of the secure aggregation protocol by Melis et al.
- Port of client side to run on Android, via Apache Cordova
- Cryptographic operations: Edc25519 elliptic curve 128 bit security
- Android device: Samsung Galaxy A3, 1.2 GHz quad-core Snapdragon 410, 1.5 GB RAM, Lollipop v5.0.2
- PowerTutor app for power monitoring

- ROI matrix of size (582, 2)
- $\sim 7s$ encryption for groups of 200 mobile users



TFL Execution Time - Encryption Phase.

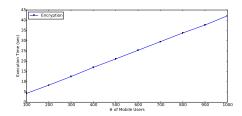
- ROI matrix of size (582, 2)
- $\sim 7s$ encryption for groups of 200 mobile users



TFL Execution Time - Encryption Phase.

10.7KB public keys, 4.54KB encrypted ROI matrix

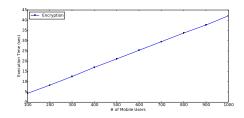
- ROI matrix of size (582, 2)
- $\sim 7s$ encryption for groups of 200 mobile users



TFL Execution Time - Encryption Phase.

- 10.7KB public keys, 4.54KB encrypted ROI matrix
- 826mJ encryption, 609mJ / 322mJ download / upload (via Wi-Fi)

- ROI matrix of size (582, 2)
- \sim 7s encryption for groups of 200 mobile users



TFL Execution Time - Encryption Phase.

- 10.7KB public keys, 4.54KB encrypted ROI matrix
- 826mJ encryption, 609mJ / 322mJ download / upload (via Wi-Fi)

Note: Succinct data representation can be used, if more fine grained data need to be collected (e.g. O-D matrices)

• Mobility analytics over crowd-sourced aggregate location data

- Mobility analytics over crowd-sourced aggregate location data
- Time series modeling with seasonality for:
 - forecasting traffic volumes in ROIs
 - detecting anomalies
 - improving traffic volume predictions in the presence of anomalies

- Mobility analytics over crowd-sourced aggregate location data
- Time series modeling with seasonality for:
 - forecasting traffic volumes in ROIs
 - 4 detecting anomalies
 - improving traffic volume predictions in the presence of anomalies
- Experiments on real-world mobility datasets (TFL, SFC)

- Mobility analytics over crowd-sourced aggregate location data
- Time series modeling with seasonality for:
 - forecasting traffic volumes in ROIs
 - detecting anomalies
 - improving traffic volume predictions in the presence of anomalies
- Experiments on real-world mobility datasets (TFL, SFC)
- Privacy-respecting system for data collection
- Mobile application framework (MDD) and empirical evaluation in terms of computation / communication / energy overhead

• Evaluate our methodology on different mobility datasets

- Evaluate our methodology on different mobility datasets
- Privacy quantification and analysis of aggregate location data

- Evaluate our methodology on different mobility datasets
- Privacy quantification and analysis of aggregate location data
 - group sizes

- Evaluate our methodology on different mobility datasets
- Privacy quantification and analysis of aggregate location data
 - group sizes
 - characteristics of ROIs (density, size, time)

- Evaluate our methodology on different mobility datasets
- Privacy quantification and analysis of aggregate location data
 - group sizes
 - characteristics of ROIs (density, size, time)
 - semantics of ROIs

The end...

The end...

Thanks for your attention! Any questions?

The end...

Thanks for your attention! Any questions?

Contact Details: apostolos.pyrgelis.14@ucl.ac.uk